
Chapitre 1

Géométrie vectorielle et affine

1.1 Vecteurs du plan et de l’espace

Une flèche est un couple de points du plan ou de l’espace.

Par exemple, la flèche (A; B) représentée ci-
contre est d’origine A et d’extrémité B.

A : origine

B : extrémité

Deux flèches sont dites équipollentes s’il existe une translation permettant de passer de l’une
des flèches à l’autre flèche.

Autrement dit, deux flèches sont équipol-
lentes si elles ont même direction, même
sens et même longueur.

Les flèches (A; B) et (C; D) représentées ci-
contre sont équipollentes.

A

BC

D

Vecteur (idée...)

Toutes les flèches équipollentes représentent le même vecteur.

Ainsi un vecteur est caractérisé par :

• sa direction

• son sens

• sa longueur

Un vecteur se note −→a ,
−→
b ,

−→
AB,

−−→
CD...

L’ensemble des vecteurs du plan se note V2.
L’ensemble des vecteurs de l’espace se note V3.

a

support du vecteur

A : origine

B : extrémitéAB
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1.1.1 Vecteurs opposés

Les vecteurs −→a et
−→
b sont dits opposés s’ils ont même direction, même longueur, mais sont de

sens contraires ; on note −→a = −
−→
b .

−→
AB = −→u

−→
AB = −

−→
FE

−→
AB =

−→
EF A

B

E

F

−→
AB −→u −→

FE

1.1.2 Vecteur nul

Le vecteur nul noté
−→
0 est le vecteur

−→
AA où A est un point quelconque du plan ou de l’espace.

Le vecteur nul n’a pas de direction déterminée.

1.1.3 Norme d’un vecteur

La norme du vecteur −→v notée ‖−→v ‖ est la longueur de l’une des flèches qui représente le
vecteur −→v .

La norme d’un vecteur est donc un nombre réel positif (ou nul).

Exemple 1.1.

Dans la représentation ci-contre, on consi-
dère 1 carré comme unité.
Déterminer la norme du vecteur −→a repré-
senté.

Unité

−→a
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1.2 Addition de vecteurs

Considérons deux vecteurs −→a et
−→
b

−→a

−→
b

Méthode du triangle

On place l’origine de la flèche qui représente
le vecteur

−→
b à l’extrémité de la flèche qui

représente le vecteur −→a .

−→
b

−→a

−→a +
−→
b

1.3 Soustraction de vecteurs

La soustraction du vecteur
−→
b au vecteur −→a est définie par :

−→a −
−→
b = −→a + (−

−→
b )

−→
b−→a

−
−→
b−→a −

−→
b
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Exemple 1.2.

Constuire sur le dessin ci-dessous :

−→a +
−→
b ,

−→
b + −→a , −→a −

−→
b ,

−→
b − −→a ,

(−→a +
−→
b
)

+ −→c et −→a +
(−→

b + −→c
)

Que constate-t-on ?

a
bc

Propriétés de l’addition et de la soustraction de vecteurs

Si −→a ,
−→
b et −→c sont trois vecteurs du plan ou de l’espace, on a :

a) −→a +
−→
b =

−→
b + −→a (l’addition est commutative )

b)
(−→a +

−→
b
)

+ −→c = −→a +
(−→

b + −→c
)

(l’addition est associative )

c) Si −→a =
−→
AB alors − −→a =

−→
BA

d) La règle des signes est valable : −→a − (−
−→
b ) = −→a +

−→
b
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1.4 Produit d’un vecteur par un scalaire

Un scalaire est un nombre réel.

Le produit k · −→a est le vecteur

• de même direction que −→a si −→a $= −→
0

• de norme ‖k · −→a ‖ = |k| · ‖−→a ‖
• qui a même sens que −→a si k > 0 et qui est de sens contraire si k < 0

• qui est le vecteur
−→
0 si k = 0.

−→a

2−→a

−
1
2

−→a

Exemple 1.3.

Soient les points A, B, C et D de la droite graduée suivante :

A B C D

Compléter afin d’obtenir des égalités :

−→
AB = ...........

−−→
BC

−−→
DC = ...........

−−→
BC

−→
AC = ...........

−−→
AD

−−→
DB = ...........

−→
AB
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1.5 Combinaisons linéaires de vecteurs

• −→v est une combinaison linéaire de −→a et
−→
b s’il existe k, m ∈ R tels que −→v = k−→a + m

−→
b .

• −→v est une combinaison linéaire de −→a ,
−→
b et −→c , s’il existe k, m, n ∈ R tels que

−→v = k−→a + m
−→
b + n−→c .

Remarque 1.1.

On peut simplifier une combinaison linéaire de vecteurs en suivant des règles identiques à celles
du calcul littéral.

Exemple 1.4.

Simplifier les combinaisons linéaires suivantes :

a) −→v = (−→a +
−→
b ) − (−→a −

−→
b )

b) −→w = 5(3−→a − 6
−→
b ) − 3(2−→a −

−→
b )

1.6 Vecteurs colinéaires

Deux vecteurs −→a et
−→
b sont dits colinéaires

si l’une des deux conditions suivantes est sa-
tisfaite :

a) −→a ou
−→
b est nul (ou les deux sont nuls)

b) −→a et
−→
b ont même direction.

Cette définition est valable dans le plan et
dans l’espace.

−→a −→
b

Théorème 1.1 (1er critère de colinéarité)
−→a et

−→
b colinéaires ⇐⇒ ∃k ∈ R avec −→a = k ·

−→
b ou

−→
b = k · −→a

Remarque 1.2.
a) Le vecteur nul est colinéaire à tous les autres vecteurs.
b) Le 1er critère de colinéarité est valable autant dans le plan que dans l’espace.
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1.7 Règle de Chasles

−→
AB +

−−→
BC =

−→
AC

−→
AC +

−−→
CB =

−→
AB

−→
BA +

−→
AC =

−−→
BC A

B

C

Michel Chasles 1793-1880, mathématicien français...

Utilisation de la règle de Chasles

Elle permet de simplifier des expressions vectorielles.

Exemple 1.5.

a) Soient A, B et C trois points quelconques du plan ou de l’espace. Simplifier

−→a =
−→
AB +

−→
CA −

−−→
CB

b) Soient O, A et B trois points quelconques du plan ou de l’espace, ainsi que le point C situé
au quart du segment AB depuis A.
Exprimer

−→
OC comme combinaison linéaire de

−→
OA et

−−→
OB.
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A partir du prochain paragraphe, seule la géométrie plane sera traitée.

1.8 Bases et composantes des vecteurs du plan

Tout couple (−→e1 ; −→e2 ) de vecteurs non colinéaires du plan V2 forme une base des vecteurs du
plan.

Remarque 1.3.

Il s’agit de distinguer la base (−→e1 ; −→e2 ) de la base (−→e2 ; −→e1 ).

Composantes d’un vecteur relativement à une base

Les composantes de −→a relativement à la base (−→e1 ; −→e2 ) sont les deux nombres réels a1 et a2 tels
que −→a = a1

−→e1 + a2
−→e2 .

On note −→a =
(

a1

a2

)

.

Remarque 1.4.

• a1 est la première composante de −→a
• a2 est la deuxième composante de −→a

A

e2

e1 a1 e1

a2 e2
C

B

D

Exemple 1.6.

Déterminer graphiquement les composantes du vecteur −→a dans la base B = (−→e1 ; −→e2 ).

−→a

−→e1

−→e2
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Calculs avec des composantes

a) Les composantes sont uniques
(

a1

a2

)

=
(

b1

b2

)

⇐⇒
{

a1 = b1

a2 = b2

b) Addition des vecteurs = Addition des composantes
(

a1

a2

)

+
(

b1

b2

)

=
(

a1 + b1

a2 + b2

)

c) Produit d’un vecteur par un scalaire = Produit des composantes par le scalaire

k

(
a1

a2

)

=
(

ka1

ka2

)

Exemple 1.7.

Relativement à une base B = (−→e1 ; −→e2 ), on considère les vecteurs

−→a =
(

10
8

)

et
−→
b =

(
−2
5

)

a) Calculer les composantes du vecteur −→c = 2−→a − 3
−→
b dans la base B.

b) Exprimer le vecteur −→v =
(

9
−6

)

comme combinaison linéaire des vecteurs −→a et
−→
b .

24 Gymnase de Burier



CHAPITRE 1. GÉOMÉTRIE VECTORIELLE ET AFFINE

Gymnase de Burier 25



Cours 1ère année Math Standard

1.9 Repère et coordonnées du plan

Un repère R du plan est un systèmes d’axes
gradués Oxy.

R est défini par un point O et une
base B = (−→e1 ; −→e2 ) de vecteurs du plan.

• O est l’origine du repère

• B = (−→e1 ; −→e2 ) est la base associée

• On note R = (O; −→e1 ; −→e2 ).

O
e2

e1

y

x

1.9.1 Coordonnées d’un point du plan

P (p1; p2) ⇐⇒
−→
OP = p1

−→e1 + p2
−→e2 =

(
p1

p2

)

• p1 : 1ère coordonnée ou abscisse de P

• p2 : 2e coordonnée ou ordonnée de P.

O
e2

e1 p1 e1

p2 e2
P

Exemple 1.8.

Soit l’hexagone ABCDEF formé de dix triangles équilatéraux juxtaposés comme le représente
la figure ci-dessous, ainsi que le repère R = (O; −→e1 ; −→e2 ) avec −→e1 =

−→
OG et −→e2 =

−−→
OH. Calculer les

coordonnées des points F et D.

A B

C

DE

F

G

H

O
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1.9.2 Calcul des composantes d’un vecteur

Soient A(a1; a2) et B(b1; b2) deux points exprimés dans un repère R = (O; −→e1 ; −→e2 ).

Par la règle de Chasles

−→
AB =

−−→
OB −

−→
OA =

(
b1

b2

)

−
(

a1

a2

)

=
(

b1 − a1

b2 − a2

)

Exemple 1.9.

Relativement à un repère R = (O; −→e1 ; −→e2 ), on considère les points :

A(5; 5), B(7; −1) et C(−2; −3)

a) Déterminer les composantes des vecteurs
−→
AB,

−→
AC et

−−→
BC.

b) Calculer les coordonnés du point D tel que le quadrilatère ABCD soit un parallélogramme.
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1.10 Milieu d’un segment

Soit M le milieu d’un segment AB.

a) Méthode vectorielle :

−−→
OM =

1
2

−→
OA +

1
2

−−→
OB

b) Méthode analytique :
Relativement à un repère R = (O; −→e1 ; −→e2 ), si

A(a1; a2) et B(b1; b2)

on a

M

(
a1 + b1

2
;
a2 + b2

2

)

O A

B

M

Exemple 1.10.

Dans le plan muni d’un repère, calculer les coordonnées du milieu M du segment AB d’extré-
mités A(3; −5) et B(−1; 11).

1.11 Centre de gravité d’un triangle

Soit G le centre de gravité d’un triangle ABC.

a) Méthode vectorielle :

−→
OG =

1
3

−→
OA +

1
3

−−→
OB +

1
3

−→
OC

b) Méthode analytique :
Relativement à un repère R = (O; −→e1 ; −→e2 ), si

A(a1; a2), B(b1; b2) et C(c1; c2)

on a

G

(
a1 + b1 + c1

3
;
a2 + b2 + c2

3

)

C A

B

G

Exemple 1.11.

Dans le plan muni d’un repère, calculer les coordonnées du centre de gravité G du triangle
ABC de sommets A(3; −5), B(−1; 11) et C(−5; 3).
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1.12 Exercices
1.1

Représenter un hexagone régulier ABCDEF de centre O. Donner le nombre de vecteurs
différents que l’on peut définir à l’aide des lettres de cette figure, ainsi qu’un représentant
de chaque vecteur.

1.2

a) Construire la somme des trois vecteurs ci-dessous :

−→a

−→
b

−→c

b) Tracer trois vecteurs non nuls et n’ayant pas la même direction mais dont la somme soit
le vecteur nul.

1.3

Dans les deux cas suivants, construire le vecteur demandé.
Cas 1

−→a
−→
b

−→c

Cas 2

−→a
−→
b

−→c

Le vecteur −→a + −→c +
−→
b
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Le vecteur
−→
b − −→c + −→a

Le vecteur −→a −
(−→c +

−→
b
)

Le vecteur −→x tel que −→x + −→a =
−→
b

1.4

Soit ABCDEF un hexagone régulier de centre O. Exprimer plus simplement les vecteurs
qui suivent. Utiliser le point O lorsque c’est nécessaire.

a) −→a =
−→
AB +

−−→
CD

b)
−→
b =

−→
AB +

−→
FE

c) −→c =
−→
AC −

−→
FE

d)
−→
d =

−−→
EB +

−−→
DE

e) −→e =
−→
FE +

−→
FE

f)
−→
f =

−→
FA +

−−→
BC +

−→
AB +

−−→
DD
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1.5

On considère le parallélépipède ABCD EFGH représenté ci-dessous. Simplifier au maxi-
mum les expressions vectorielles suivantes :

a) −→a =
−→
AB +

−→
FG

b)
−→
b =

−→
AG +

−−→
CD

c) −→c =
−−→
EB +

−→
CA

d)
−→
d =

−−→
EH +

−−→
DC +

−→
GA

e) −→e =
−−→
AH +

−−→
EB

f)
−→
f =

−→
AB +

−→
CC +

−−→
BH +

−→
GF

A

BC

D

E

FG

H

1.6

Reprendre les vecteurs de l’exercice 1.3 et représenter dans les deux cas le vecteur

5
2

−→a + 2
−→
b − 2 −→c

1.7

Exprimer −→v en fonction de −→a et
−→
b si

3 (−→a − 2−→v ) − 6
−→
b = −7

(15
7

−→v − 3
−→
b
)

+ 12−→a .

1.8

Représenter trois points A, B et P pour lesquels :

a)
−→
AP = 3

−→
AB

b)
−→
AP = 1

2

−→
BA

c)
−→
P A = −3

2

−−→
BP

d)
−→
P A = −3

5

−−→
BP

e)
−→
P A = 3

7

−→
AB

f)
−→
AP = 5

−4

−−→
P B

g)
−→
P A = −2

−−→
P B
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1.9

Par rapport aux vecteurs de la figure :

a) Exprimer −→c comme combinaison linéaire de −→a et
−→
b .

b) Exprimer
−→
d comme combinaison linéaire de −→a et

−→
b .

c) Exprimer −→x = −1
2
−→c − 5

−→
d comme combinaison linéaire de −→a et

−→
b .

−→a

−→
b

−→c

−→
d

1.10

Soit ABCD EFGH un cube pour lequel on pose −→a =
−→
AB,

−→
b =

−−→
AD et −→c =

−→
AE. Soit

M le milieu du côté FG, N celui de HG et P le centre de la face ABCD. Faire une figure
d’étude puis exprimer les vecteurs suivants comme combinaison linéaire de −→a ,

−→
b et −→c :−→

EP ,
−−→
EM ,

−−→
EN ,

−−→
NM ,

−−→
P N ,

−−→
NP , et

−−→
P M .

1.11

Soit une pyramide de sommet S dont la base ABCD est un parallélogramme. On pose
−→u =

−→
SA, −→v =

−→
SB et −→w =

−→
SC. Réaliser une bonne figure d’étude. Exprimer chacun des

vecteurs suivants comme combinaison linéaire des vecteurs −→u , −→v et −→w :
−→
SD,

−→
AC,

−−→
BD,

−→
AB,−−→

BC et
−−→
AD.

1.12

Soit ABCD un parallélogramme pour lequel on pose −→a =
−→
AB et

−→
b =

−−→
AD. Soit M le

milieu de BC et P le point tel que
−→
P A = −2

−→
P C. Exprimer les vecteurs

−−→
P B,

−−→
P M et

−−→
DM

comme combinaison linéaire de −→a et
−→
b .

1.13

Soit A, B, C, D et E des points quelconques. Sans utiliser de dessin, simplifier le plus
possible les expressions suivantes :

a)
−−→
BD +

−→
AB +

−−→
DC

b)
−−→
BC +

−−→
DE +

−−→
DC +

−−→
AD +

−−→
EB

c)
−→
AC −

−−→
BD −

−→
AB

d)
−−→
DA −

−−→
DB −

−−→
CD −

−−→
BC

e)
−−→
EC −

−−→
ED +

−−→
CB −

−−→
DB

Gymnase de Burier 35



Cours 1ère année Math Standard

1.14

Dans la figure ci-contre, les nombres représentent les lon-
gueurs des segments concernés.
Exprimer le vecteur

−→
AP comme combinaison linéaire des

vecteurs
−→
AB et

−→
AC.

4

46

2

A

D
C

B

P

1.15

Démontrer que l’égalité suivante est toujours vraie :
−→
AC + 2

−−→
BC = 2

−→
CA − 5

−−→
CB + 3

−→
AB.

1.16

On considère la figure suivante

e1e2

a) Représenter les vecteurs suivants, dont les composantes sont données relativement à la
base B = (−→e1 ; −→e2 ) :

−→a =
(

2
0

)
−→
b =

(
1
3

)
−→c =

(
−2
−1

)
−→
d =

(
0

−3

)
−→
f =

(
3/2
9/4

)

b) Représenter les vecteurs
−→
b + −→c et 3

−→
b + 2−→c et donner leurs composantes dans B.
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1.17

Relativement à une base B de V2, on donne les vecteurs

−→a =
(

5
−3

)

,
−→
b =

(
4

−4

)

et −→c =
(

1
2
0

)

Calculer les composantes des vecteurs suivants :

a) 3−→a − 4
−→
b + −→c

b) −→a − 2
−→
b + 1

2
−→c

c) −5−→a − 3
−→
b − 8−→c

1.18

Relativement à une base B de V2, on donne les vecteurs

−→a =
(

2
4

)

,
−→
b =

(
3

−9

)

et −→c =
(

12
−6

)

Calculer les nombres k et m tels que k−→a + m
−→
b = −→c .

1.19

Les points M, N, P et Q sont les milieux
des côtés du parallélogramme ABCD.

A B

CD

M

N

P

Q O

a) Donner, dans la base B1 =
(−→
AB;

−−→
AD

)
, les composantes des vecteurs

−→
AB,

−−→
AD,

−−→
AM ,

−→
AQ,

−−→
AN ,

−→
AP ,

−→
AO,

−−→
OB,

−→
QP et

−−→
CM

b) Mêmes questions, mais relativement à la base B2 =
(−−→
AD;

−−→
AM

)

1.20

Soit ABCDEF un hexagone régulier de centre O. Donner
les composantes des vecteurs
−→
AB,

−−→
CB,

−→
FA,

−→
EA,

−−→
EC,

−−→
DB,

−−→
EB,

−→
OA,

−−→
OB,

−→
OC,

−−→
OD et

−−→
OE

a) dans la base B1 =
(−→
EF ;

−−→
ED

)

b) dans la base B2 =
(−−→
OE;

−→
OC

)

A

O

B

C

D

E

F
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1.21

Soit B = (−→e1 ; −→e2 ) une base de V2 et B′ =
(−→a ;

−→
b
)

une autre base de V2. On donne les

composantes de −→a et
−→
b relativement à la base B : −→a =

(
1
1

)

et
−→
b =

(
2
3

)

.

a) Donner les composantes de −→e1 et −→e2 dans la base B.

b) Donner les composantes de −→e1 et −→e2 dans la base B′.

1.22

Relativement à une base B de V2, on considère les vecteurs :

−→a =
(

1
3

)

,
−→
b =

(
0

−1

)

, −→c =
(

−2
3

)

,
−→
d =

(
2
6

)

, −→e =
(

0
0

)

,

−→
f =

(
6

−4

)

, −→g =
(

1
−3

2

)

,
−→
h =




1
9
1
3



 ,
−→
i =

(
0
2
3

)

.

Regrouper les vecteurs qui sont colinéaires.

1.23

Relativement à une base B de V2, on donne les vecteurs

−→a =
(

7
−2

)

,
−→
b =

(
−3
5

)

et −→c =
(

0
5

)

.

Déterminer un nombre réel λ et un vecteur −→x colinéaire à −→a tels quel −→x + λ
−→
b = −→c

1.24

On donne les points A(5; 2), B(8; 0), C(−2; −4) et D(4; −6). Calculer les composantes des
vecteurs suivants :

a)
−→
AB

b)
−−→
BD

c)
−→
CA

d)
−−→
AD +

−−→
CB

e)
−−→
BC −

−→
AC +

−−→
DB

f) 4
−−→
CD − 3

(−→
CA +

−−→
BC

)

1.25

Dans le plan muni d’un repère R = (O; −→e1 ; −→e2 ), on donne les points A(−1; 4), B(2; 5), C(3; 3)
et D(−2; 2).

a) Calculer les composantes des vecteurs
−→
AB,

−→
AC et

−−→
AD.

b) Exprimer
−→
AB comme combinaison linéaire des vecteurs

−→
AC et

−−→
AD.
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1.26

On donne les points A(1; 1), B(10; 5) et C(4; 12).
Calculer les coordonnées du point D tel que :

a) ABCD soit un parallélogramme b) ABDC soit un parallélogramme

1.27

Soit les points A(−4; 2), B(1; 3) et C(2; 5). Calculer les coordonnées des milieux des côtés
du triangle ABC et celles du centre de gravité de ce triangle.

1.28

On considère les points A(2; −1) et B(0; 3).

a) Déterminer le point C tel que le centre de gravité du triangle ABC soit l’origine O du
repère.

b) Déterminer ensuite le point D tel que le quadrilatère ABCD soit un parallélogramme.

1.29

Les points M(2; −1), N(−1; 4) et P (−2; 2) sont les milieux des côtés d’un triangle dont on
demande de calculer les sommets.

1.30

On donne les points A(3; 2), B(−5; 6) et C(−2; −3).
Trouver les coordonnées du point K situé au quart de AB depuis A, et du point M situé
aux deux tiers de BC depuis B.

1.31

Calculer les coordonnées des points qui divisent le segment [AB] en cinq parties égales, si
A(2; 3) et B(3; 8).

1.32

a) Les points A(−4; 5), B(2; −3) et C(23; −30) sont-ils alignés ?

b) Déterminer la valeur de la constante k pour laquelle les points A, B et C donnés ci-
dessous sont alignés.

A(1; 2), B(−3; 3) et C(k; 1)

1.33

On donne A(7; −3) et B(23; −6).
Déterminer les coordonnées du point C de l’axe Ox qui est aligné avec A et B.
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1.13 Réponses

1.1 19 vecteurs :
−→
OO,

−→
OA,

−−→
OB,

−→
OC,

−−→
OD,

−−→
OE,

−→
OF ,

−→
AC,

−−→
AD,

−→
AE,

−−→
BE,

−−→
BF ,

−→
CA,

−→
CF ,

−−→
DA,

−−→
DB,

−−→
EB,

−−→
EC,

−→
FC.

1.4
a)

−→
FE b)

−→
AC c)

−→
AB d)

−−→
DB e)

−−→
AD f)

−→
FC

1.5
a)

−→
AC b)

−−→
AH c)

−−→
HA d)

−→
EA e)

−→
AC f)

−→
AE

1.7 −→v = −→a + 3
−→
b

1.9 a) −→c = 6−→a − 2
−→
b b)

−→
d = −−→a −

−→
b c) −→x = 2−→a + 6

−→
b

1.10
a)

−→
EP = 1

2
−→a + 1

2

−→
b − "c

b)
−−→
EM = −→a + 1

2

−→
b

c)
−−→
EN = 1

2
−→a +

−→
b

d)
−−→
NM = 1

2
−→a − 1

2

−→
b

e)
−−→
P N = 1

2

−→
b + −→c

f)
−−→
NP = −1

2

−→
b − −→c

g)
−−→
P M = 1

2
−→a + −→c

1.11
a)

−→
SD = −→u − −→v + −→w

b)
−→
AC = −−→u + −→w

c)
−−→
BD = −→u − 2−→v + −→w

d)
−→
AB = −−→u + −→v

e)
−−→
BC = −−→v + −→w

f)
−−→
AD = −−→v + −→w

1.12
a)

−−→
P B = 1

3
−→a − 2

3

−→
b b)

−−→
P M = 1

3
−→a − 1

6

−→
b c)

−−→
DM = −→a − 1

2

−→
b

1.13
a)

−→
AC b)

−→
AC +

−−→
DC c)

−−→
DC d)

−−→
DA e)

−→
0

1.14
−→
AP =

2
15

"AB +
1
5

"AC

1.16 b)
−→
b + −→c =

(
−1
2

)

, 3
−→
b + 2−→c =

(
−1
7

)

1.17

a)
(

−1
2

7

)

b)
(

−11
4

5

)

c)
(

−41
27

)

1.18 k = 3, m = 2

1.19
a)

−→
AB =

(
1
0

)

,
−−→
AD =

(
0
1

)

,
−−→
AM =

(
1
2
0

)

,
−→
AQ =

(
0
1
2

)

,
−−→
AN =

(
1
1
2

)

,
−→
AP =

(
1
2
1

)

,

−→
AO =

(
1
2
1
2

)

,
−−→
OB =

(
1
2

−1
2

)

,
−→
QP =

(
1
2
1
2

)

,
−−→
CM =

(
−1

2
−1

)

.
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b)
−→
AB =

(
0
2

)

,
−−→
AD =

(
1
0

)

,
−−→
AM =

(
0
1

)

,
−→
AQ =

(
1
2
0

)

,
−−→
AN =

(
1
2
2

)

,

−→
AP =

(
1
1

)

,
−→
AO =

(
1
2
1

)

,
−−→
OB =

(
−1

2
1

)

,
−→
QP =

(
1
2
1

)

,
−−→
CM =

(
−1
−1

)

.

1.20
a)

−→
AB =

(
0
1

)

,
−−→
CB =

(
1
0

)

,
−→
FA =

(
1
1

)

,
−→
EA =

(
2
1

)

,
−−→
EC =

(
1
2

)

−−→
DB =

(
2
1

)

,
−−→
EB =

(
2
2

)

,
−→
OA =

(
1
0

)

,
−−→
OB =

(
1
1

)

,

−→
OC =

(
0
1

)
−−→
OD =

(
−1
0

)

,
−−→
OE =

(
−1
−1

)

.

b)
−→
AB =

(
0
1

)

,
−−→
CB =

(
−1
−1

)

,
−→
FA =

(
−1
0

)

,
−→
EA =

(
−2
−1

)

,

−−→
EC =

(
−1
1

)

,
−−→
DB =

(
−2
−1

)

,
−−→
EB =

(
−2
0

)

,
−→
OA =

(
−1
−1

)

−−→
OB =

(
−1
0

)

,
−→
OC =

(
0
1

)

,
−−→
OD =

(
1
1

)

,
−−→
OE =

(
1
0

)

.

1.21
a) −→e1 =

(
1
0

)

B

−→e2 =
(

0
1

)

B

b) −→e1 =
(

3
−1

)

B′

−→e2 =
(

−2
1

)

B′

1.22 "a =
1
2

"d = 9"h ; "b = −
3
2

"ı ; "c = −2"g ; "f ; "e colinéaire à tous les vecteurs.

1.23 λ =
35
29

et "x =




105
29

−30
29





1.24

a)
(

3
−2

)

b)
(

−4
−6

)

c)
(

7
6

)

d)
(

9
−4

)

e)
(

1
8

)

f)
(

33
−14

)

1.25 a)
−→
AB =

(
3
1

)

;
−→
AC =

(
4

−1

)

;
−−→
AD =

(
−1
−2

)

b)
−→
AB =

5
9

−→
AC −

7
9

−−→
AD
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1.26

a) (−5; 8)

b) (13; 16)

1.27 MAB(−
3
2

;
5
2

), MAC(−1;
7
2

), MBC(
3
2

; 4), G(−
1
3

;
10
3

)

1.28
a) C(−2; −2)

b) D(0; −6)

1.29 A(−5; 7), B(1; −3), C(3; 1)

1.30 K(1; 3), M(−3; 0)

1.31 (2.2; 4) (2.4; 5) (2.6; 6) (2.8; 7)

1.32

a) non alignés.

b) k = 5

1.33 C(−9; 0)
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